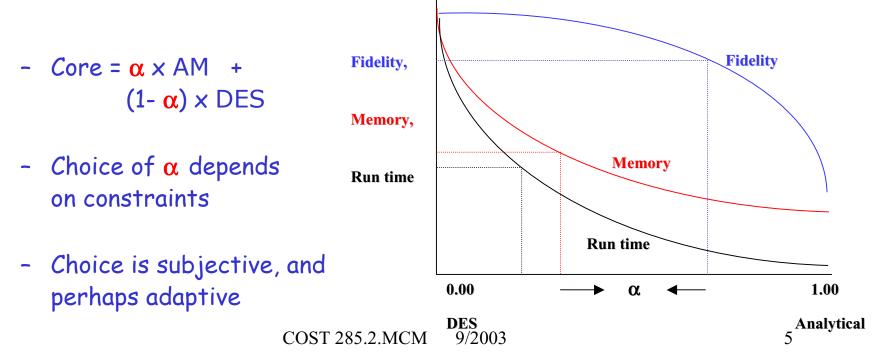
Task 1.1 Analytic and hybrid cores for reducing simulation time

Observations about modeling tools that use analytical or hybrid techniques

1. Task statement

- There are two basic techniques for simulating networks which approach the problem from different directions
 - 1. Analytical techniques examine the network in the steady-state and use mathematical formulas employing assumptions about the network
 - 2. Discrete-event simulation examines the dynamic behavior of the network and incorporates every event in the network
- Two tasks
 - 1. Investigate the strengths and limitations of modeling tools which are based on analytic cores
 - 2. Investigate hybrid simulation techniques in which one focuses the simulation on a portion of the network of special interest, and models the remainder of the network using analytic techniques


- Problem space -- one viewpoint ...
 - Network modeling usually requires components operating at the network edge (e.g., traffic generators, protocol stacks), and components operating in the network core (e.g., AQM, routing protocols)

 Some simulations require very high fidelity in one 			Network Fidelity	
or both component spaces			Low	High
- One can (naïvely) partition the problem space this way →	Edge	Low	Trivial	Analytical edge, DES core
• •	Fidelity	High	DES edge, analytical core	Difficult

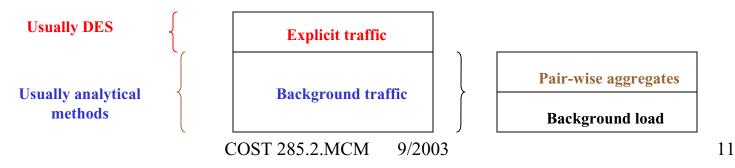
- Examples
 - (Lo, Lo): Some low-end commercial 'predictors'
 - (Lo, Hi): Test a new variant of OSPF -- network behavior is most important
 - (Hi, Lo): Test a new variant of TCP for protocol correctness -- edge behavior is most important
 - (Hi, Hi): Many interesting problems
 - Many techniques have been proposed to reduce (Hi, Hi) difficulty to manageable levels
 - Hybrid techniques may combine analytical methods and DES

problems		Network	Fidelity	
		Low	High	
Edge	Low	Trivial	Analytical edge, DES core	
Fidelity	High	DES edge, analytical core	Difficult	

- One approach for the (Hi, Hi) situation
 - Edge -- use DES for high fidelity; models may be simple or complex
 - Core
 - Use analytical methods (AM) for background and aggregate traffic
 - Run a simple routing algorithm (e.g., SPF) to adjust after link failures
 - Use some proportion of explicit, DES-based traffic to introduce variability and stochastic effects

2. Analytical methods

- Rationale for using analytical methods
 - Potential for greatly reduced run times and memory requirements, higher scalability
 - Can provide adequate, first-order estimates of network behavior if carefully crafted; however, statistics may be point estimates
 - Some commercially successful tools are based on analytical cores, or on hybrid cores
- Task #1: "Investigate the strengths and limitations of modeling tools which are based on analytic cores"
- How are analytical methods implemented in commercial tools?
 - Implementations may provide insight about strengths and limitations of these methods
 - Details are usually a trade secret, but there are hints in white papers and technical reports
 - Some educated guesses follow, and we can certainly drill deeper


- Method 1: Jackson networks (Jackson, Kleinrock)
 - Independent servers, independent M/M/1 queues, independent queue occupancies and delays, steady state assumptions
 - External (new) arrivals are Poisson, network has random routing, packet lengths are approximately exponentially distributed
 - Merging traffic streams restores the independence of interarrival times and packet lengths (Kleinrock Independence Approximation)
 - One treats the network of queues as a single queuing system, and applies Little's Law for occupancies and delays
 - Provides good first-order approximations for moderate traffic loads
- Method 2: BCMP networks (Baskett, Chandy, Muntz, Palacios)
 - N classes of customers, class-based capacity limits
 - Random class-based routing, class-based service rates
 - Servers can be
 - Single, FIFO, exponential service time distribution
 - Single, un-weighted round robin, arbitrary service time distribution
 - Single server, preemptive LIFO, arbitrary service time distribution
 - Infinite servers, arbitrary service time distribution

- Method 3: Operational analysis, operational laws (Buzen, Denning)
 - A simplified form of queuing theory that is generally free of assumptions about the distributions of interarrival and service times
 - E.g., Little's Law is an operational law
 - "Operational" => "directly measured"; i.e., the method is used to derive equations from measurements (or estimates) that characterize network performance during a given period
 - Equations based on operational laws are used to estimate throughput, service time, utilization, waiting time, response time, occupancy, ...
- Method 4: Generic performance models
 - Models objects -- message handlers, latency and load on clients, servers, links, and infrastructure
 - Delay round trip, send, process, or reply characterized by mean, mode, median, standard deviation, percentile
 - Utilization by link or server; worst case analysis based on loading levels
 - Link failure and link errors, and transport layer error rates
 - Sensitivity analysis for variations in key parameters

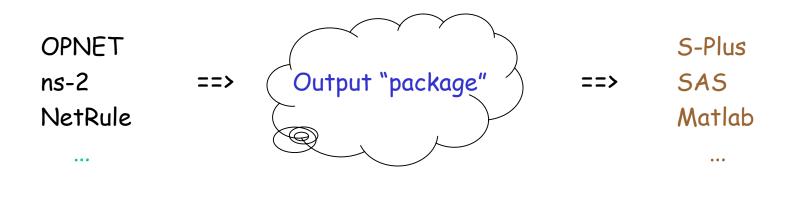
- Method 5: Kalashnikov's method
 - Self-adapting method that splits a model into analytical and DES components
 - Uses Whitt's Queuing Network Analyzer (QNA) for analytical modeling component
 - http://www.columbia.edu/~ww2040/A1b.html
 - Uses Transform Expand Sample (TES) processes as traffic generators
 - Jelenkovic and Melamed, "Automated TES modeling of compressed video", *IEEE INFOCOM '95*, pp. 746-752
 - Uses LRM (Likelihood Ratio Method) sensitivity estimates for transformation and abstraction of network models
 - http://www.jip.ru/2002/29.pdf
 - Uses piecewise linear aggregates as the formalism for DES component
 - Dzemydiene and Pranevicius, "Integration of Aggregate Approach in Knowledge Representation of the Multi-modal Transport Evaluation System", *Proc. Third Intl. Workshop on Databases and Information Systems*, 1998

- Method 6: Trace-driven background traffic models
 - Uses packet traces collected at network exchange points
 - Partitions the aggregate traffic into sub-streams, one for each destination in the backbone network
 - Result is a background traffic load model for wide-area network simulations
 - E.g., Lucas et al., "(M, P, S) An efficient background traffic model for wide area network simulation," *1997 IEEE Global Telecom. Conf.*
- Method 7: Traffic matrices
 - Matrices for source x destination pairs, with per-pair traffic loads in discrete time slots (e.g., 15 minute slots)
 - Often based on measured traffic traces; estimates are also used
- Method 8: Neuro-dynamic programming (Dimitri Bertsekas)
 - "Appropriate for systems that are difficult to model but easy to simulate, e.g., large data networks" (D.B.)

- Method 9: Hybrid methods for modeling the core network
 - 1. Background traffic
 - 1a. Background load, usually static per link
 - 1b. Aggregate flows, may be per end-to-end pairs, may change with time
 - Both may be based on imported traffic traces (e.g., RMON-2)
 - Both use counts -- packets, bits per unit time -- not individual packets
 - Both can be used to build traffic matrices
 - Both provide coarse point estimates of mean utilization and latency
 - 2. Explicit traffic
 - Usually based on DES -- packet-level detail
 - Captures (some) important protocol effects on a per-packet basis: flow control, loss, retransmissions, prioritization, window sizes, blocking, ...
 - Used to introduce fine-grained variability and stochastic effects
 - Used to estimate response time, jitter, empirical distributions, min/max

3. Network emulation

- Task #2: "Investigate hybrid simulation techniques in which one focuses the simulation on a portion of the network..., and models the remainder ... using analytic techniques"
- Another technique is worth investigating -- network emulation
 - 1. Core -- virtual links, arbitrary topologies, and arbitrary bandwidth, delay and error characteristics
 - 2. Edge -- Artificial traffic sources and/or realistic protocol stacks
 - References
 - "Report of NSF Workshop on Network Research Testbeds", http://wwwnet.cs.umass.edu/testbed_workshop/testbed_workshop_report_final.pdf, November 2002
 - Rizzo, "Dummynet: a simple approach to the evaluation of network protocols", ACM CCR, January 1997
 - White et al., "An integrated experimental environment for distributed systems and networks", *Proc. 5th Symp. Operating Systems Design and Implementation*, 2002
 - Vahdat et al., "Scalability and accuracy in a large-scale network emulator", Proc. 5th Symp. Operating Systems Design and Implementation, 2002


Task 1.2 Statistical Analysis Tools

Thoughts about packaging simulation output

COST 285.2.MCM 9/2003

1. Task statement

- The quality and depth of statistical analysis tools embedded in some commercial simulation products are disappointing
- This may require that simulation output be analyzed using an external tool like S-Plus or SAS or Matlab
- An elegant solution would be to have simulation tools "package" their output for third-party tools in a standard format

COST 285.2.MCM 9/2003

- Not an O(MN) problem today, but certainly an O(M+N) problem for many practitioners
- This is a chronic problem with no widely accepted solution
 - "A feature that is currently of considerable interest is the ability to ... export data to ... other applications (e.g., an Excel spreadsheet or a database)." *
 - "It should be possible to export individual model output observations ... to other software packages such as spreadsheets, databases, statistics packages, and graphical packages for further analysis and display." *

*Law and Kelton, 3d Edition (2000)

- 'Packaging' goes beyond the (statistical) analysis of output
 - Storage, display, data management, sampling/re-sampling, pseudotrace construction, documentation, etc.

2. Present approach

- Practitioners use 'external' tools due to
 - Poor, incomplete, or inflexible features embedded in the simulation tool
 - Personal preference; e.g., S-Plus for analysis, AutoBox for time series
 - Quality and availability of external statistical and analytical tools
 - Open source tools (e.g., R, Octave, GnuPlot)
 - Powerful commercial tools with attractive academic discounts (e.g., SAS)
- Capturing output can be unwieldy
 - Some simulation tools use proprietary formats for exporting data
 - Some require a commercial product (e.g., Excel) or conversion
 - Some may be constrained (e.g., spreadsheet format with size limits)
 - Extracting data from simulation plots and displays can require significant manual effort and great care
 - Output/export usually lacks metadata descriptions and rich data formats
 - E.g., comma-delimited ASCII with no description of fields
 - Limited data types, no way to indicate missing values, etc.

3. Possible approach

- Define a format for simulation output
 - Run simulation, generate output "package", pass to external tool
 - Format should be standard, open, configurable, and limited only by the capacity of the storage device
 - Want to optionally capture raw output, data in plots and displays, event queue snapshots (perhaps), etc.
- Must be amenable to processing by a scripting language or tool
- Format consists of two components
 - Schema (metadata, descriptor, ...)
 - Editable; could be something like an SQL CREATE TABLE
 - Could be based on open source variant like MySQL or PostgreSQL, or XML constructs, etc.
 - Data
 - Standard, importable format consistent with relational (tabular) model
 - Unlimited number of rows, very large number of columns

3. Possible approach (cont.)

- The simulation tool generates a schema and data; e.g.,
 - Schema

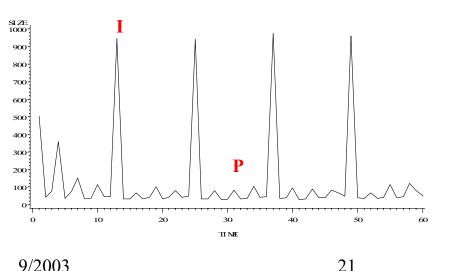
```
CREATE TABLE QueueSize (
ID type(n),
Timestamp type(n),
QueueName type(n),
QueueLength type(n),
....);
```

- Editable
- Amenable to processing by a scripting language or tool
- Data
 - Standard importable format (e.g., .csv) for wide compatibility
 - Relational model with rich data types
 - Support for missing values, - ∞ , + ∞ , and other special indications that are important to statistical tools; there may be standards for these
 - Optional sequence numbers to guarantee order and completeness, and checksums or other 'signatures' to guarantee record and file integrity
 - Amenable to processing by a scripting language or tool

```
COST 285.2.MCM 9/2003
```

4. Issues

- Has this been done?
 - A cursory search found nothing; this has almost certainly been proposed but has not been (widely) accepted
- Will it succeed?
 - Endorsement by an EU COST Action carries considerable weight
 - Vendors may resist, as proprietary formats lock you into their tools
 - More likely to be embraced by the open source community
- What difference will it make?
 - Many advantages -- configurable, standard, open, limited only by the capacity of the storage device, amenable to scripting, etc.
- What resources might be required?
 - An undergraduate project to develop some ideas, or ...
 - A Master's project or thesis to develop a detailed framework and a non-trivial open source implementation


Task 1.3 Multimedia Traffic

Thoughts about multimedia traffic models at different time scales

COST 285.2.MCM 9/2003

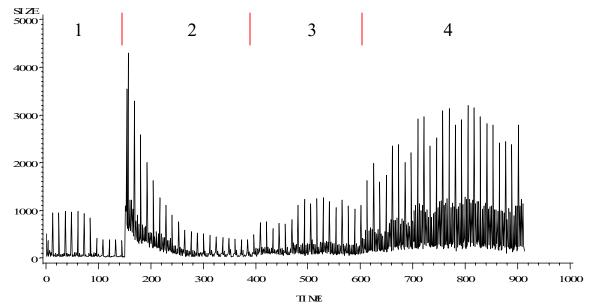
1. Task statement

- Multimedia traffic studies carried out in COST Action 256 and elsewhere indicate that protocols behave differently at different time scales
- A study will be undertaken of the network behavior in different time scales, e.g., 1, 10, 100 second intervals, including the method of validation of simulation results
- Some multimedia traffic is semi-regular as it leaves the source; e.g., MPEG-4 segment with (IBB PBB PBB PBB) structure
- Traffic generators and protocol behaviors almost certainly differ at different time scales
- E.g., if we sum over every 12 frames then we are likely to lose the 'seasonal' effects

COST 285.2.MCM 9/2003

- Many types of multimedia traffic have characteristic statistical signatures induced by their encoders
- There is a significant base of research in this area
 - E.g., circa 1988 -- Verbiest, Nomura, Sen, Maglaris, many others
 - E.g., circa 1991 -- Grünenfelder, Manthorpe, Heyman, many others
 - E.g., 1995-present -- non-linear threshold AR models, fractional ARIMAs, DARs, GBARs, nested ARs, various LRD models, MMRPs, M/G/~ models, fluid flow models, TES, ARTA, ... (many others)
 - Liu (ICC '01) -- technique based on decomposition/recombination for modeling MPEG autocorrelation functions
- Many of these models and techniques are valid; it is not clear which might be best for building realistic traffic generators
- We might be able to use a 'characteristic signatures' approach to build a representative set of parametric traffic models for standard multimedia types

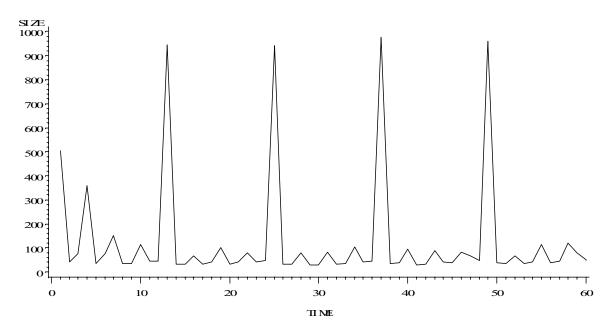
2. Possible approaches


- 1. Empirical approach
 - There are a number of collections of frame traces
 - E.g., TU Berlin has a library of frame size traces of long MPEG-4 and H.263 encoded videos
 - Trace used in the examples that follow is
 - Star Wars IV, MPEG-4, low quality frame trace
 - GOP structure is (IBB PBB PBB PBB)
 - URL is http://www-tkn.ee.tu-berlin.de/research/trace/pics/ FrameTrace/mp4/
 - 2. Theoretical approach

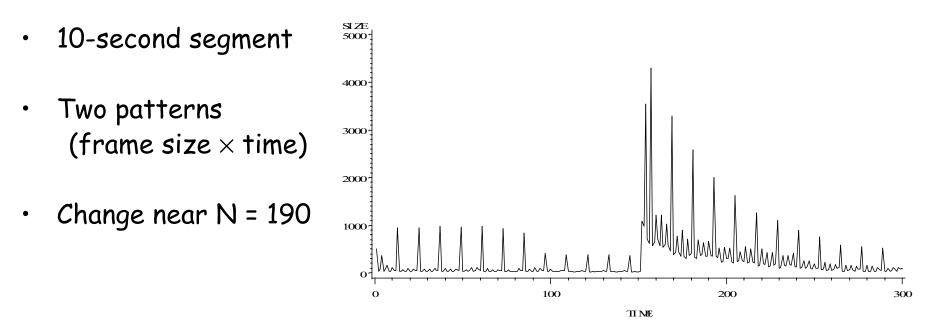
٠

- What happens when you aggregate to coarser time scales?
- Is there theory for temporal aggregation for a particular model family?
- Amemiya & Wu, Brewer, Granger & Morris, and others developed some theory for temporal aggregation of ARMA models in early 1970s
- Can this be extended to ARIMA models, SARIMAs, fractional ARIMAs, etc. that are more typical of encoded multimedia traffic?

3. Empirical approach example


- Examine a 30 second
 subset of the trace 400
 (frame size × time) 300
- Four distinctly different patterns

- Non-stationary in mean and variance, with seasonal components induced by the encoder
 - The trace can be modeled in many ways
 - E.g., a multiplicative seasonal autoregressive integrated moving average process (S-ARIMA \times S-ARIMA) is one candidate
 - Transformations (e.g., differencing, seasonal differencing, logarithmic, Box-Cox) may be required in order to analyze the trace


3. Empirical approach example (cont.)

- 2-second segment
- Very regular pattern IBB PBB PBB PBB (frame size × time)
- S(t) = size at time t
- e(t) = actual S(t) predicted S(t)
- e(i) ~ i.i.d.(0,σ(e))

- A reasonable model (based on conditional least squares) is:
 - Model: $(1 B^{12}) \times S(t) = (1 0.697 B^3) \times e(t) \equiv S(t) S(t-12) = e(t) 0.697 e(t-3)$
 - Seasonal differencing at lag 12, moving average term at lag 3; this captures the IBB PBB PBB PBB structure
 - Non-significant mean

3. Empirical approach example (cont.)



- A reasonable model (conditional least squares) is:
 - LS(t) = log(size) at time t; variance is non-stationary
 - Model: $(1 B^1)(1 B^{12}) \times LS(t) =$ (1 - 0.266 B¹)(1 - 0.100 B³)(1 - 0.548 B¹²) × e(t)
 - Seasonal differencing, moving average terms, non-significant mean
 - Two distinct processes representing two distinct 'scenes'
 - Second process has interesting exponential-like decay

COST 285.2.MCM 9/2003

3. Empirical approach example (cont.)

- 80-second segment, aggregated
- 12 frames \rightarrow 1 value 7000 (Σ frame sizes \times time $^{5000}_{4000}$
- Quite different when aggregated

- A reasonable model (conditional least squares) is:
 - Differencing required as mean is non-stationary; D(t) = S(t) S(t-1)
 - Model: $(1 B^1) \times S(t) =$ $(1 + 0.331 B^1)(1 - 0.191 B^2)(1 - 0.181 B^3) \times e(t)$
 - Third-order moving average on difference D(t)
 - Non-significant mean

4. Steps

- Analyze a number of multimedia traces
 - Different multimedia types, encodings, time scales
 - Characterize them statistically and tabulate the characterizations; ARIMA models are one approach; others may be better

-	Multimedia type Encodir		Timescale	Model
	Video	MPEG-4	0.033 sec	SARIMA(s,p,d,q)
	Video	MPEG-4	0.400 sec	IMA(0,1,q)

- Build realistic, parametric traffic generators for these models
 - A few tens of lines of per model may be sufficient
 - E.g., http://statistics.okstate.edu/bilder/stat5053/schedule/2.9.doc contains
 S-Plus code for SARIMA models
 - Code for a family of traffic models would be a valuable contribution
- Is LRD behavior present? If so, models must also capture LRD.
- Is there theory for temporal aggregation (comparable to Amemiya & Wu, Brewer, Granger & Morris results for ARMA models)?
- Resources -- requires a student with background in statistics

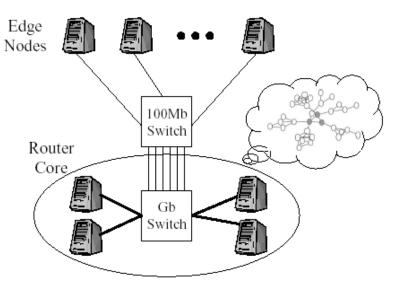
Task 2.2 Multi-layer Traffic Modeling/Models

A mini-testbed approach to multi-layer traffic modeling

1. Task statement

- Some recently proposed models for TCP and their potential in addressing multi-layer traffic modeling will be investigated
- Some focus on window sizing and network issues separately but not independently, and when they can be coupled with a source levelmodel the outcome might be a valuable step toward multi-layer modeling
- Work by Chadi Barakat and colleagues
 - http://www-sop.inria.fr/planete/personnel/Chadi.Barakat/
 - Work on modeling TCP at the packet, session and system levels
- Work by Jitendra Padhye, Sally Floyd, Jim Roberts, etc.
 - Padhye et al., "Modeling TCP throughput: a simple model and its empirical validation", Proc. SIGCOMM '98
 - Padhye and Floyd, "On inferring TCP behavior", Proc. SIGCOMM '01
 - Jim Roberts (http://perso.rd.francetelecom.fr/roberts/Publications.html)

- It would be interesting to combine good source and lower-layer models into two-layer or three-layer traffic models and to begin studying the convolutional and confounding effects
- It is a very difficult problem; you have a mix of characteristics ...
 - Traffic sources (greedy, bursty, periodic, non-stationary, autocorrelated, LRD, stochastic, stream *vs*. elastic, multiplexing, ...)
 - Control loops (many TCP variants, TCP dynamics, RTTs, retransmissions, effects of nested control loops as with TCP over ATM ABR, ...)
 - Network elements (queuing, blocking, AQM, class or priority, ...)
 - Cross-layer protocols (mobile and wireless, λ routing and IP routing in optical networks, ...)
 - Bandwidth and other asymmetries, session lengths and distributions, ...
 - Applications (terabyte and petabyte file transfers, HTTP sessions, ...)
- ... and an enormous number of potential convolutional, confounding, and interaction effects; some may be influential
- Some elegant solutions for specific problems, but we need insight


2. Network emulation

- A technique worth investigating is network emulation
 - 1. Core -- virtual links, arbitrary topologies, and arbitrary bandwidth, delay and error characteristics
 - 2. Edge -- Artificial traffic sources and/or realistic protocol stacks
 - References
 - "Report of NSF Workshop on Network Research Testbeds", http://wwwnet.cs.umass.edu/testbed_workshop/testbed_workshop_report_final.pdf, November 2002
 - Rizzo, "Dummynet: a simple approach to the evaluation of network protocols", ACM CCR, January 1997
 - White et al., "An integrated experimental environment for distributed systems and networks", *Proc. 5th Symp. Operating Systems Design and Implementation*, 2002
 - Vahdat et al., "Scalability and accuracy in a large-scale network emulator", Proc. 5th Symp. Operating Systems Design and Implementation, 2002
- A semi-empirical tool with great value for insight and validation;
 "Internet in a can" perspective

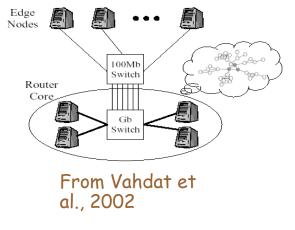
COST 285.2.MCM 9/2003

2. Network emulation (cont.)

- Edge nodes running unmodified protocol stacks are physically interconnected by fast links
 - Can be commodity single-board computers or multi-tasking hosts
 - Run applications, OS, protocols
- Simulated core network routes packets, and subjects traffic to bandwidth, congestion, latency, loss, error, etc.

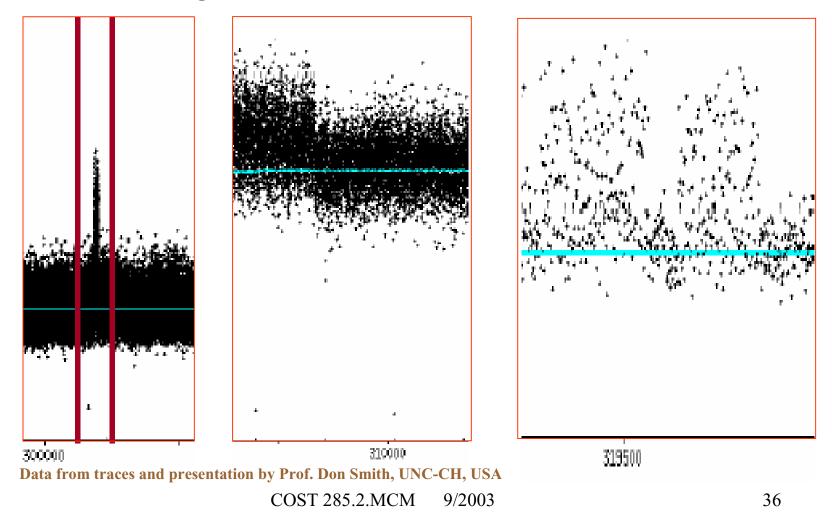
From Vahdat et al., 2002

- Emulates packet's end-to-end path across a specific network topology
- A single core node emulates about 70K-120K packets/second [Vahdat]
- Some emulators scale linearly with additional core nodes
- Captures queuing, cross traffic, latency, jitter, loss, congestion, failure
- Supports thousands of edge-node instances and gigabits of bandwidth


3. Tradeoffs

Advantages

- Edges -- scalable and ultra-realistic as edge nodes run actual unmodified applications, OS, and protocol stacks
- Can run multiple processes on the same node; feasible to run tens of instances of an application edge node on one physical device
- Core -- scalable; provides realistic hop-by-hop emulation
- Network topologies are specified by the user
- Emulations are per-packet, and run in (near) real time and at (nearly) the same rate as in the modeled network
- Long run times can be accommodated
- Results are 100% reproducible; this is important for diagnoses
- At least one implementation of an emulator may be available to academic institutions
- Issues
 - Cost
 - Footprint
 - Quasi-cluster architecture, concurrency
 - Availability


4. Relevance to Task 1.1

- Task 1.1 Statement #2: "Investigate hybrid simulation techniques in which one focuses the simulation on a portion of the network..., and models the remainder ... using analytic techniques"
- May be a valuable adjunct to several of our tasks
- Provides insight and validation to very difficult problems in (near) real time; e.g., cross-layer and multi-layer protocol analysis, development and testing
- May be amenable to grid computing

4. Relevance to Task 1.1 (cont.)

 Long run times may generate realistic abnormal events usually not found in DES; e.g.,

